Mark
Hertzberg
Associate Professor
Physics & Astronomy
Theoretical Physics: Cosmology, Particle Physics, Astrophysics.
My primary research is in physics at the interface between theoretical cosmology and particle physics, including astrophysics and aspects of quantum field theory. By studying the extreme conditions of the very early universe, as well as the properties of the late universe's dark constituents, and analyzing the results of various ground based experiments, we can gain insights into the fundamental laws of nature. This acts as the driving force behind much of my research, although I sometimes investigate other interesting subjects.
A central focus has been on trying to understand the nature of dark matter, which forms the majority of matter in the universe. There are various interesting candidates for the dark matter, including so-called axions, which may organize into new interesting types of structures. Furthermore, I have worked on the understanding the large scale structure of the universe, which gives insights into the initial conditions of the early universe.
Another focus has been on understanding cosmological inflation, which is the leading idea for the earliest moments of our universe, involving an early phase of rapid expansion. I have worked on connecting inflation to the matter anti-matter asymmetry of the universe and worked on the post-inflationary era where the universe needs to transition to a hot soup of particles.
A recent interest is in pursuing a fundamental understanding of gravitation. I am interested in understanding the full set of theoretical and observational constraints that determine the structure of gravitation, including constraints from quantum mechanics. Furthermore, I sometimes investigate interesting quantum phenomena, including entanglement entropy and the Casimir effect.